Energy, it is fair to say, is a very vague concept. So where does one go to learn more? Does one have to take a physics course? I don’t think so, and to test my theory, I have tried to explain energy as briefly as I can, right here. haltonmachining
Energy 101
Energy is what makes the world go round. Literally. Every neuron that sparks in your brain, every electron that fires down a wire, every molecule burning in a fire, carries with it a sort of momentum that it passes on like a baton in a complex relay race. The batons are flooding in all directions all around us and across the universe – they are energy and we have learned how to harness them.
The actual word “Energy” is a much abused term nowadays – because energy is used to represent such a disparate range of phenomena from heat to light to speed to weight, and because it seems to be able to change forms so readily, it is cannon fodder for pseudo-scientific and spiritual interpretation. However, you will be pleased to hear that it actually has a very clear (and consistent) nature.
I like to think of energy being a bit like money – it is a sort of currency that can be traded. It takes on various forms (dollars/pounds/Swiss francs) and can be eventually cashed in to achieve something. However, just like money, once spent, it does not vanish. It simply moves on a new chapter in its life and may be reused indefinitely. wrdesignprint
To illustrate the point, let’s follow a ‘unit of energy’ through a visit to planet Earth to see what I mean. The [number] shows every time it changes currency (see the key below).
The energy in our story starts off tied up in hydrogen atoms in the sun [1]. Suddenly, due to the immense pressure and heat, the nuclei of several atoms react to form a brand new helium atom, and a burst of radiation[2] is released. The radiation smashes into other nearby atoms heating them up so hot [4] that they glow, sending light [2] off into space. Several minutes pass in silence before the light bursts through the atmosphere and plunges down to the rainforest hitting a leaf. In the leaf the burst of power smashes a molecule of carbon dioxide and helps free the carbon to make food for the plant [3]. The plant may be eaten (giving food ‘Calories’), or may fall to the ground and settle and age for millions of years turning perhaps to coal. That coal may be dug up and burned to give heat [4] in a power station, boiling water to supply compressed steam [5] that may drive a turbine [6] which may be used to generate electricity [7] which we may then use in our homes to heat/light/move/cook or perhaps to recharge our mobile phone [3]. That energy will then be used to transmit microwaves when you make a call [2] which will mostly dissipate into the environment heating it (very) slightly [4]. Eventually the warmed earth radiates [2] this excess of heat off into the void where perhaps it will have another life…
Energy currencies:
[1] Matter is energy, according the Einstein, and the quantity relates to mass according to E=mc^2 (c is a constant equal to the speed of light).
[2] Radiation (like sunlight) is a flow of energy, and energy content relates the frequency according to E=hf (h is the Planck constant).
[3] Chemical energy – the most complex energy, a mixture of different tensions in nuclear and electromagnetic force fields.
[4] Thermal (heat) energy- this is really just a sneaky form of kinetic energy [6 below] – small particles moving and vibrating fast are sensed by us as heat.
[5] Compression (or tension) energy – while compressed air is again a sneaky form of kinetic energy
[6], a compressed spring is different – it’s energy is more like chemical energy and is stored by creating tension in the force fields present in nature (gravity, electromagnetism and nuclear forces).
[6] Kinetic energy – is energy by virtue of movement (like a speeding bullet or unstoppable train)
[7] Electrical energy – this energy, like a compressed spring, is stored as stress in force fields, in this case electromagnetic force-fields. For more info please visit these sites :- https://www.dkproducts.biz
https://www.coalharbour.net
https://www.nationalbankoftennessee.com
https://rubens-gomes.com
This short story is testament to an enormous quantity of learning by our species, but there are some clear exclusions to be read into the story:
- Energy fields (auras) or the energy lines in the body that conduct the “chi” (or life force) of Asian medical tradition
- Energy lines on the Earth (aka Ley lines)
- Negative or positive energy (as in positive or negative “vibes”)
These energy currencies relate to theories and beliefs that science has been unable to verify and thus they have no known “exchange rate”. Asking how many light bulbs can you power with your Chi is thus a nonsensical question, whereas it would not be for any scientifically supported form of energy. And since energy flows account for all actions in the universe, not being exchangeable would be rather limiting.
Where exactly is Energy kept?
This may sound like s strange question, we know Energy is kept in batteries, petrol tanks and chocolate chip cookies. But the question is, where exactly is it stored in those things?
Energy is stored in several ways:
-
- as movement – any mass moving has energy by virtue of the movement, which is called Kinetic Energy
-
- as matter – Einstein figured out that matter is just a form of energy, and the exchange rate is amazing – 1g = 90,000,000,000,000,000 joules (from E=mc^2)
- as tension in force fields
That last one sounds a bit cryptic, but actually most of the energy we use is in this form – petrol, food, batteries and even a raised hammer all store energy in what are essentially compressed (or stretched springs).
What is a force field? Why on earth did I have to bring that up?
All of space (even the interstellar vacuum) is permeated by force fields. The one we all know best is gravity – we know that if we lift a weight, we have to exert effort and that effort is then stored in that weight and can be recovered later by dropping it on your foot.
Gravity is only one of several force fields known to science. Magnetic fields are very similar – it takes energy to pull a magnet off the fridge, and so it is actually an energy store when kept away from the fridge.